Grundlagen der Funktionalanalysis

Kapitel 10: Spezialfall: Endlichdimensionale Räume

B.Sc. Matthias Schulte

Technische Universität Dortmund

16. Mai 2018

Einstieg

- Jetzt: Was passiert bei endlicher Raumdimension?
- Ziele:
 - ▶ Alle Normen in \mathbb{K}^n sind äquivalent.
 - ► Lineare Operatoren zwischen endlichdimensionalen Räumen sind immer stetig.

Erinnerung

- $\bullet \ \ell_p^n = \left(\mathbb{K}^n, \left\| \cdot \right\|_p \right)$
- $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, 1 \leq p < \infty, n \in \mathbb{N}$
- Verwendete Norm:

$$\|x\|_{p} := \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{1/p}, \ x := (x_{1}, \dots, x_{n}) \in \mathbb{K}^{n}.$$
 (1)

Normäquivalenz auf \mathbb{K}^n

Satz 10.1

Alle Normen auf \mathbb{K}^n sind äquivalent, d.h. für zwei Normen $\|\cdot\|$ und $\|\cdot\|'$ auf einem \mathbb{K} -Vektorraum gilt

$$\exists c, C > 0 \ \forall x \in X : c ||x|| \le ||x||' \le C ||x||.$$
 (2)

Folgerungen

Satz 10.2

Es sei V ein normierter Raum mit dim $V = n < \infty$. Dann gilt:

- 1) $V \stackrel{\sim}{=} \ell_1^n$
- 2) *V* ist vollständig.

Satz 10.3

Es sei X ein normierter Raum und die Einheitskugel B_X sei präkompakt. Dann gilt dim $X < \infty$.

Anwendung der Normäquivalenz – Bestapproximationen

Satz 10.4

Es sei X ein normierter Raum, $V \subseteq X$ ein Unterraum mit $\dim V < \infty$ und $x \in X$.

Dann existiert ein $v_0 \in V$ mit

$$||x - v_0|| =: d_V(x) := \inf\{||x - v|| : v \in V\}.$$
(3)

 v_0 heißt **Bestapproximation** von x in V.

Lineare Operatoren auf endlichdimensionalen Räumen

Satz 10.5

Jede lineare Abbildung von einem endlichdimensionalen normierten Raum in einen normierten Raum Y ist stetig.

 Also: Endlichdimensionale Räume sind im Sinne der Funktionalanalysis trivial.

Grundlagen der Funktionalanalysis

Kapitel 11: Lineare Integral- und Differentialoperatoren

B.Sc. Matthias Schulte

Technische Universität Dortmund

12. Juni 2018

Einstieg

 In Beispiel 7.12 haben wir bereits einen einfachen Vertreter der Integraloperatoren gesehen:

$$J(g)(f) = \int_{K} f(t)g(t) dt, f \in C(K).$$

- Ziele:
 - ► Allgemeine Integraloperatoren einführen
 - ► Geeignete Normen und Abschätzungen herleiten
 - ► Unterschiede zu Differentialoperatoren kennenlernen
 - ► Lösungsansätze zu deren Untersuchung aufzeigen

Integraloperatoren

Definition 11.1

Es sei $K \subset \mathbb{R}^n$ kompakt und $\kappa \in C(K^2)$. Wir definieren für $t \in K$

$$S := S_{\kappa} : f \mapsto (Sf)(t) := \int_{K} \kappa(t, s) f(s) \, \mathrm{d}s. \tag{1}$$

Dann heißt S linearer Integraloperator und κ ein stetiger Kern.

- ightarrow Interpretation von κ : Kontinuierliche Fortsetzung einer quadratischen Matrix (a_{ij}) .
- Nun: Geeignete Normen suchen!

Normen für Integraloperatoren

Definition 11.2

Es sei $K \subset \mathbb{R}^n$ kompakt und $\kappa \in C(K^2)$ ein stetiger Kern.

Spaltenintegral-Norm:

$$\|\kappa\|_{\mathsf{SI}} := \sup_{s \in K} \int_{K} |\kappa(t, s)| \, \, \mathrm{d}t \tag{2}$$

Zeilenintegral-Norm:

$$\|\kappa\|_{\mathrm{ZI}} := \sup_{t \in K} \int_{K} |\kappa(t, s)| \, \mathrm{d}s \tag{3}$$

- Also analog zur Zeilensummen- bzw. Spaltensummennorm bei Matrizen.
- Motiviert durch obige Interpretation von κ.

Erste Folgerungen

Folgerung 11.3

Es gilt stets $\|\kappa\|_{SI} \leqslant \lambda(K) \|\kappa\|_{\sup}$ und $\|\kappa\|_{ZI} \leqslant \lambda(K) \|\kappa\|_{\sup}$, wobei $\lambda(K)$ das n-dimensionale Lebesguemaß von K bezeichnet.

Satz 11.4

Der Integraloperator S_{κ} aus 11.1 bildet $L_1(K)$ in C(K) ab.

Folgerung 11.5

Es gilt

- \underline{a} $\|Sf\|_{\sup} \leq \|\kappa\|_{\sup} \|f\|_{L_1}$
- $\underline{\mathrm{b})} \ \left\| Sf \right\|_{\sup} \leqslant \left\| \kappa \right\|_{\mathrm{ZI}} \left\| f \right\|_{L_{\infty}}$

BEWEIS. Folgt sofort aus dem Beweis von Satz 11.4.

Abbildungsverhalten von S_{κ}

Satz 11.6

 S_{κ} bildet beschränkte Teilmengen von $L_1(K)$ in gleichstetige Teilmengen von C(K) ab.

Folgerung 11.7

 S_{κ} bildet beschränkte Teilmengen von $L_p(K)$ in relativ kompakte Teilmengen von C(K) ab.

Normabschätzungen

Bemerkung 11.8

Es gilt

$$\|S_{\kappa}\|_{\mathcal{L}(C(K))} = \|\kappa\|_{Z^{1}}. \tag{4}$$

Satz 11.9

Es seien $1 und <math>\frac{1}{p} + \frac{1}{q} = 1$. Zudem sei $S := S_{\kappa}$ wie in 11.1. Dann gelten die Abschätzungen

- $\underline{1)} \|S_{\kappa}f\|_{L_{2}} \leq \|\kappa\|_{L_{2}(K^{2})} \|f\|_{L_{2}}, f \in L_{2}(K).$
- $\underline{2)} \ \|S_{\kappa}f\|_{L_{1}} \leqslant \|\kappa\|_{SI} \|f\|_{L_{1}}, \ f \in L_{1}(K).$
- $\underline{3)} \|S_{\kappa}f\|_{L_{\rho}} \leqslant \|\kappa\|_{\mathsf{ZI}}^{1/q} \|\kappa\|_{\mathsf{SI}}^{1/p} \|f\|_{L_{\rho}}, \ f \in L_{\rho}(K).$

Differentialoperatoren

- Bisher: Lineare *Integral* operatoren können als stetige lineare Operatoren auf einem Banachraum realisiert werden.
- Nun diskutieren wir kurz, warum dies für lineare Differentialoperatoren nicht gilt.

Beispiel 11.10

Ausweg: $||Df||_{\sup} \leq ||f||_{C^1} \Rightarrow D: (C^1[0,b], ||\cdot||_{C^1}) \to (C[0,b], ||\cdot||_{\sup})$ stetig.

Untersuchung von Differentialoperatoren

- Drei Lösungsideen, um obiges Problem zu umgehen:
 - 1) Formuliere das Problem als *Integral* gleichung um.
 - $\overline{2)}$ Realisiere $T:D(T)\to X$ als unbeschränkten linearen Operator in X, wobei D(T) der Definitionsbereich von T ist. \to Spektraltheorie.
 - 3) Realisiere T als stetigen linearen Operator auf einem nicht-normierbaren Raum, z.B. einem Raum von C^{∞} -Funktionen.
- Dies bleiben aber nur Ansätze. Ein allgemeines Rezept gibt es nicht.
- Die Untersuchung von Differentialoperatoren bleibt also ein schwieriges Problem der Funktionalanalysis.

Grundlagen der Funktionalanalysis

Kapitel 12: Der Satz von Baire

B.Sc. Matthias Schulte

Technische Universität Dortmund

1. Oktober 2018

Einstieg

Beginn von Teil 3:

Prinzipien der Funktionalanalysis

- Frage: Was folgt alles aus der Vollständigkeit eines (metrischen) Raumes?
- Erste Anworten: Satz von Osgood, Bairescher Kategoriensatz.

Der Satz von Osgood

Satz 12.1 (Satz von Osgood)

Es sei M eine punktweise beschränkte Menge stetiger Funktionen auf \mathbb{R} . Dann gibt es ein nichtleeres offenes Intervall $I \subset \mathbb{R}$, auf dem M gleichmäßig beschränkt ist, d.h. es gilt:

$$\exists S \in \mathbb{R} \ \forall x \in I \ \forall f \in M: \ |f(x)| \leqslant S. \tag{1}$$

- Begrifflicher Rahmen?
- Kommt jetzt!

Bairesche Kategorien

Definition 12.2 (Bairesche Kategorien)

Es sei M ein metrischer Raum.

<u>a)</u> $A \subseteq M$ heißt **nirgends dicht**, falls das Innere des Abschlusses von A leer ist:

$$\overline{A}^{\circ} = \emptyset.$$
 (2)

- b) Eine abzählbare Vereinigung nirgends dichter Teilmengen von *M* heißt mager oder von erster Kategorie.
- $\underline{c)}$ Nicht magerer Teilmengen von M heißen von zweiter Kategorie.

Bemerkung 12.3

Teilmengen und abzählbare Vereinigungen magerer Mengen sind wieder mager.

• Wir kommen nun zu einigen Beispielen.

Bairesche Kategorien – Beispiele

Beispiel 12.4

- <u>a)</u> Jede einpunktige Teilmenge von $\mathbb R$ ist nirgends dicht, folglich sind also abzählbare Teilmengen mager in $\mathbb R$. Insbesondere ist $\mathbb Q$ mager in $\mathbb R$ (beachte: $(\mathbb Q, |\cdot|)$ ist nicht vollständig!).
- b) Es sei X ein normierter Raum und V Unterraum. Wenn V einen inneren Punkt hat, sagen wir $v_0 \in V^\circ$, so folgt aus $U^X_\delta(v_0) \subseteq V$ für $\delta > 0$ sofort V = X. Ist V also ein echter Unterraum von X, so ist V nirgends dicht in X.
- c) Es sei $\{x_n\}_{n=1}^{\infty}$ eine (eventuell algebraische) Basis eines normierten Raumes X. Dann sind die Unterräume

$$V_n := [x_1, \dots, x_n], \quad n \in \mathbb{N}, \tag{3}$$

nirgends dicht in X, also $X = \bigcup_{n \in \mathbb{N}} V_n$ mager.

Satz von Baire

- Mit diesen Begrifflichkeiten können wir nun den Satz von Baire formulieren.
- Dieser charakterisiert in gewisser Weise die Mengen zweiter Kategorie in metrischen Räumen.

Theorem 12.5 (Satz von Baire)

Es sei M ein vollständiger metrischer Raum. Dann ist jede offene Teilmenge von M von zweiter Kategorie.

Folgerung 12.6

Jeder metrische Raum M ist von zweiter Kategorie.

Folgerung 12.7

Jede Basis eines Banachraums enthält entweder endlich viele oder überabzählbar viele Elemente.

Anwendungen des Satzes von Baire

- Jetzt: Wichtige Anwendung des Satzes von Baire.
- Ziel: Wirkung dieses Satzes in Beweisen kennenlernen.

Satz 12.8

Wir betrachten zwei metrische Räume M und Y sowie eine Folge (f_n) in C(M,Y) mit $\lim_{n\to\infty} f_n(x) = f(x)$ für alle $x\in M$.

Dann ist die Menge aller Unstetigkeitsstellen von f mager in M.

Folgerung 12.9

In einem vollständigen metrischen Raum ist nach dem Satz von Baire die Funktion f (wie in 12.8) auf einer nichtleeren Menge zweiter Kategorie stetig.

Anwendungen des Satzes von Baire auf lineare Operatoren

Bemerkung 12.10

Ist f (wie in 12.8 definiert) ein linearer Operator, so folgt wegen Satz 5.4 aus der Stetigkeit in einem Punkt sofort die Stetigkeit auf dem ganzen Raum.

Folgerung 12.11

Es seien nun X,Y normierte Räume, X sei vollständig und (T_n) eine Folge in $\mathcal{L}(X,Y)$, für die

$$\lim_{n\to\infty} T_n(x) = T(x) \ \forall x \in X$$

gilt. Dann ist $T \in \mathcal{L}(X, Y)$.

Äquivalente Formulierung des Satzes von Baire

• Wir beenden dieses Kapitel mit einer äquivalenten Formulierung von Theorem 12.5.

Bemerkung 12.12

Die Aussage des Satzes von Baire ist äquivalent zu folgenden Formulierungen:

- Ist M ein vollständiger, metrischer Raum, so besitzt eine magerer Menge $S \subseteq M$ keinen inneren Punkt.
- In einem vollständigen metrischen Raum M ist ein abzählbarer Durchschnitt offener und dichter Mengen in M dicht.
- Der Satz von Baire ist unser erstes Prinzip der Funktionalanalysis.
- Nächstes Mal: Weiteres Prinzip der Funktionalanalysis
 → Prinzip der gleichmäßigen Beschränktheit.

Grundlagen der Funktionalanalysis

Kapitel 13: Das Prinzip der gleichmäßigen Beschränktheit

B.Sc. Matthias Schulte

Technische Universität Dortmund

1. Oktober 2018

Einstieg

- Nun: Prinzip der gleichmäßigen Beschränktheit (und Anwendungen).
- Idee: Untersuche Folgen stetiger linearer Operatoren zwischen normierten Räumen.
- Dabei kann einer der Räume oder auch beide Räume vollständig sein.

Gleichmäßige Beschränktheit I

Definition 13.1

Es seien X, Y normierte Räume. Eine Menge $\mathcal{H} \subset \mathcal{L}(X,Y)$ stetiger linearer Operatoren heißt **gleichmäßig beschränkt**, wenn die Menge der Operatornormen beschränkt ist:

$$C := \sup\{\|T\| : T \in \mathcal{H}\} < \infty. \tag{1}$$

Theorem 13.2 (Prinzip der gleichmäßigen Beschränktheit)

Es seien X,Y normierte Räume und $\mathcal{H}\subset\mathcal{L}(X,Y)$ eine Menge stetiger linearer Operatoren. Weiter gebe es eine Menge $Z\subset X$, sodass Z von zweiter Kategorie ist und die Mengen $\{Tz:T\in\mathcal{H}\}$ für jedes $z\in Z$ in Y beschränkt sind. Dann gilt $\sup\{||T||:T\in\mathcal{H}\}<\infty$, das heißt \mathcal{H} ist gleichmäßig beschränkt.

Gleichmäßige Beschränktheit II

Beispiel 13.3

Es sei X ein Banachraum und Y ein normierter Raum. Wählen wir Z=X, dann ist Z als offene Teilmenge nach Theorem 12.5 von zweiter Kategorie und somit ist nach Satz 13.2 jede Menge $\mathcal{H}\subset\mathcal{L}(X,Y)$ gleichmäßig beschränkt.

- Wir kommen nun zu einem weiteren wichtigen Satz, dem Satz von Banach-Steinhaus.
- Eine seiner Teilaussagen haben wir bereits in Satz 5.4 kennengelernt.

Der Satz von Banach-Steinhaus I

Satz 13.4 (Satz von Banach-Steinhaus)

Es seien X ein Banachraum und Y ein normierter Raum. Ferner sei (T_n) eine Folge von Operatoren in $\mathcal{L}(X,Y)$, sodass

$$Tx := \lim_{n \to \infty} T_n x \tag{2}$$

für alle $x \in X$ existiert. Dann gelten:

- 1) $T \in \mathcal{L}(X, Y)$.
- $\underline{2)} \|T\| \leqslant \sup_{n \in \mathbb{N}} \|T_n\| < \infty.$
- 3) $T_n \to T$ gleichmäßig auf allen kompakten Teilmengen von X.

Der Satz von Banach-Steinhaus II

Satz 13.5

Es seien X, Y Banachräume und (T_n) eine Folge in $\mathcal{L}(X,Y)$. Dann sind äquivalent:

- a) (T_n) konvergiert gleichmäßig auf kompakten Mengen in X.
- (T_n) konvergiert punktweise auf X.
- \underline{c}) (T_n) konvergiert punktweise auf einer dichten Teilmenge von X und es gilt $\sup\{||T_n||: n \in \mathbb{N}\} < \infty$.

Numerische Anwendung

Satz 13.6 (Satz von Szegö)

Es sei (Q_n) eine Folge von Näherungsquadraturen der Form

$$Q_n(f) = \sum_{j=0}^n \alpha_{n,k} f(t_{n,k}).$$

Dann gilt:

 (Q_n) konvergiert für jedes $f \in C([0,1])$ gegen $\int_0^1 f(t) dt$ genau dann, wenn die folgenden beiden Bedingungen gelten:

$$\underbrace{ (Q1)}_{n \in \mathbb{N}} M := \sup_{n \in \mathbb{N}} \sum_{k=0}^{n} |\alpha_{n,k}| < \infty$$

$$\underbrace{ (Q2)}_{n} Q_{n}p \to \int_{0}^{1} p(t) \ \mathrm{d}t \ (n \to \infty) \text{ für alle Polynome } p.$$

Grundlagen der Funktionalanalysis Kapitel 14: Der Satz von der offenen Abbildung

B.Sc. Matthias Schulte

Technische Universität Dortmund

4. Oktober 2018

Offene Abbildungen I

Definition 14.1

Es seien M, N metrische Räume. Eine Abbildung $f:M\to N$ heißt **offen**, wenn für jede offene Menge $D\subseteq M$ auch f(D) in N offen ist. Dies ist äquivalent zu der Bedingung:

$$\forall x \in M \ \forall \varepsilon > 0 \ \exists \delta > 0 \colon f\left(U_{\varepsilon}^{X}(x)\right) \supseteq U_{\delta}^{N}(f(x)) \tag{1}$$

Bemerkung 14.2

a) In einem normierten Raum X gilt

$$U_{\varepsilon}(x) = x + U_{\varepsilon}(0) = x + \varepsilon U_{1}(0) \ \forall \varepsilon > 0.$$
 (2)

<u>b)</u> Ein linearer Operator $T: X \to Y$ ist also genau dann offen, wenn gilt:

$$\exists \delta > 0 \colon f\left(U_1^X(0)\right) \supset U_\delta^Y(0). \tag{3}$$

Offene Abbildungen II

Fortsetzung von 14.2

c) Aus (3) folgt: Lineare offene Abbildungen sind stets surjektiv.

Bemerkung 14.3

Es sei X ein \mathbb{K} -Vektorraum und $V \subseteq X$ ein Unterraum. Die Quotientenabbildung $\pi := \pi_V \colon X \to Q := X/V$ (vgl. (3.9)) ist linear und es gilt $\pi(U_1^X(0)) = U_1^Q(0)$.

- Nun: eine Zerlegung von Operatoren mittels Quotientenbildung.
- Eher topologischer Natur, daher hier ohne Beweis.

Offene Abbildungen III

Satz 14.4

Es seien X, Y normierte Räume, $T \in \mathcal{L}(X,Y)$ und $\hat{T} : \hat{X} := X/N(T) \to Y$ sei definiert durch $\hat{T}(\hat{x}) := \hat{T}(\pi x) := Tx$ für $x \in \hat{X}$.

Dann ist \hat{T} wohldefiniert, es gilt $T = \hat{T} \circ \pi$, \hat{T} ist injektiv und es gilt $R(\hat{T}) = R(T)$. Ferner ist \hat{T} stetig genau dann, wenn T stetig ist.

- Nun kommen wir zum Satz der offenen Abbildung.
- Dazu müssen wir ein wenig technische Vorarbeit leisten.

Der Satz von der offenen Abbildung I

Definition 14.5

Es seien X, Y normierte Räume und $T: X \to Y$ linear. Dann heißt

$$\Gamma(T) := \{(x, Tx) \colon x \in X\} \tag{4}$$

Graph von T.

Bemerkung 14.6

- a) $\Gamma(T)$ ist ein Unterraum von $X \times Y$.
- <u>b</u>) $\Gamma(T)$ ist abgeschlossen genau dann, wenn für jede Folge (x_n) in X gilt: $x_n \to x$ in X <u>und</u> $Tx_n \to y$. $\Rightarrow y = Tx$.

Der Satz von der offenen Abbildung II

- Es folgen nun zwei Lemmata zum Beweis des Satzes von der offenen Abbildung.
- Zur Vereinfachung: $U_1^X(0) =: U$ und $U_1^Y(0) =: V$

Lemma 14.7

Es seien X, Y normierte Räume und $T:X\to Y$ ein linearer Operator, sodass R(T) von zweiter Kategorie in Y ist. Dann gilt:

$$\exists \delta > 0 \colon \overline{T(U)} \supseteq \delta V \tag{5}$$

Lemma 14.8

Es sei X ein Banachraum, Y ein normierter Raum und $T:X\to Y$ ein linearer Operator mit abgeschlossenem Graphen, so dass (5) gilt. Dann folgt

$$(1+\varepsilon)T(U)\supseteq \overline{T(U)}\ \forall \varepsilon > 0. \tag{6}$$

Der Satz von der offenen Abbildung III

Theorem 14.9 (Satz von der offenen Abbildung)

Es seien X, Y Banachräume und $T \in \mathcal{L}(X,Y)$ mit R(T) von zweiter Kategorie in Y. Dann ist T eine offene Abbildung.

Nun formulieren wir einen wichtigen Spezialfall.

Satz 14.10 (Satz vom inversen Operator)

Es seien X, Y Banachräume und $T \in \mathcal{L}(X, Y)$ bijektiv. Dann ist auch $T^{-1}: Y \to X$ stetig.

- Nun werden wir noch einige Folgerungen aus diesem Satz ziehen.
- Dafür benötigen wir einen Satz, der die Vollständigkeit des Quotientenraums garantiert.

Anwendungen I

Satz 14.11

Es sei X ein Banachraum und $V \subseteq X$ ein abgeschlossener Unterraum. Dann ist auch Q := X/V ein Banachraum.

Satz 14.12

Es seien X, Y Banachräume und $T \in \mathcal{L}(X, Y)$. Dann gilt: R(T) ist abgeschlossen. \Leftrightarrow Es gilt die Abschätzung

$$\exists \gamma > 0 \ \forall x \in X \colon \|Tx\| \geqslant \gamma \|\hat{x}\| = \gamma \|\pi x\| = \gamma d_{N(T)}(x). \tag{7}$$

Anwendungen II

Satz 14.13 (Satz vom abgeschlossenen Graphen)

Es seien X, Y Banachräume und $T: X \to Y$ linear, sodass $\Gamma(T)$ abgeschlossen ist. Dann ist T stetig.

Satz 14.14 (Satz von Hellinger-Toeplitz)

Es sei H ein Hilbertraum und $T:H\to H$ ein symmetrischer linearer Operator, d.h. es gelte

$$\langle Tx \mid y \rangle = \langle x \mid Ty \rangle \ \forall x, y \in H.$$
 (8)

Dann ist T stetig.

Grundlagen der Funktionalanalysis

Kapitel 15: Banachalgebren und Neumannsche Reihe

B.Sc. Matthias Schulte

Technische Universität Dortmund

2. Januar 2019

Banachalgebren I

Definition 15.1

Eine **Banachalgebra** $\mathcal{A}=(X,\cdot)$ ist ein Banachraum X über $\mathbb{K}\in\{\mathbb{R},\mathbb{C}\}$ mit einer Multiplikation $X\times X\to X$, welche Assoziativ- und Distributivgesetz erfüllen und für die zusätzlich folgende Bedingungen gelten:

$$(B1) (\alpha x)y = x(\alpha y) = \alpha(xy), \ \alpha \in \mathbb{K}, \ x, y \in X.$$

 $(B2) ||xy|| \le ||x|| ||y||, x, y \in X.$

(B3) Es gilt ||e|| = 1 für ein Einselement $e \in X$.

 Wir interessieren uns im Folgenden nur für Banachalgebren mit Einselement.

Banachalgebren II

Beispiel 15.2

- \underline{a} Für einen kompakten Raum K ist C(K) mit punktweiser Multiplikation eine kommutative Banachalgebra.
- b) Ist X ein Banachraum, so ist $\mathcal{L}(X) := \mathcal{L}(X, X)$ eine *nicht kommutative* Banachalgebra (z.B. $X = \mathbb{M}_{\mathbb{K}}(n)$).
- c) Für einen kompakten Raum K und eine Banachalgebra $\mathcal{A}=(X,\cdot)$ ist C(K,X) mit der punktweisen Multiplikation eine Banachalgebra. Ist X kommutativ, so auch C(K,X).
- <u>d)</u> Abgeschlossene Unteralgebren von Banachalgebren sind wieder Banachalgebren.
- Jetzt: Wichtige Eigenschaft in einer Banachalgebra:
- Konvergenz der Neumannschen Reihe.

Die Neumannsche Reihe

Satz 15.3

Es sei $\mathcal{A}=(X,\cdot)$ eine Banachalgebra und $x\in X$ mit ||x||<1. Dann ist die Reihe

$$\sum_{k=0}^{\infty} x^k \tag{1}$$

in X absolut konvergent mit

$$\sum_{k=0}^{\infty} x^k = (e - x)^{-1}.$$
 (2)

Die Reihe in (1) heißt Neumannsche Reihe.

Anwendung der Neumannschen Reihe

Beispiel 15.4 (Input-Output-Analyse nach Leontieff)

Eine Volkswirtschaft verfüge über Industrien I_1, \ldots, I_n , die gewisse Outputs erzeugen. Um einen Output im Wert von einem Euro zu erzeugen, benötigt Industrie I_j Inputs der Industrien I_k im Wert von t_{kj} Euro für $k=1,\ldots n$. Dabei gelte sinnvollerweise

$$0 \leqslant t_{kj}, \ k, j = 1, \dots, n, \ \sum_{k=1}^{n} t_{kj} < 1, \ j = 1, \dots, n.$$
 (3)

Produziert nun I_k einen Output im Wert von x_k Euro, so stehen für die restlichen Konsumenten noch $x_k - \sum_{j=1}^n t_{kj} x_j$ Outputs zur Verfügung.

<u>Problem</u>: Produziere genau so viel, dass eine gegebene Nachfrage $d = (d_1, ..., d_n)^T$ befriedigt werden kann.

Anwendung der Neumannschen Reihe II

Fortsetzung von Beispiel 15.4

Wir schreiben hierzu $x:=(x_1,\ldots,x_n)^T$ für den Produktionsvektor und führen die Matrix $T:=(t_{kj})_{k,j=1,\ldots,n}\in M_\mathbb{R}(n)$ ein. Zu lösen ist nun die Gleichung

$$x - Tx = d \Leftrightarrow (I - T)x = d.$$

Aufgrund der Voraussetzungen in (3) gilt für die Spaltensummennorm von T:

$$||T||_{SS} = \max_{j=1,\dots,n} \sum_{k=1}^{n} |t_{kj}| < 1.$$
(4)

Somit ist Satz 15.3 anwendbar und es existiert $(I - T)^{-1}$ mit

$$d = (I - T)^{-1}x. (5)$$

Wegen $s := \sum_{k=0}^{\infty} x^k = (I - T)^{-1}$ gilt $s_0 := e$ und $s_{n+1} = e + xs_n$. \Rightarrow Iteratives Lösen, bis die gewünschte Genauigkeit erreicht wird.

Abstraktere Anwendungen

Definition 15.5

Es sei $\mathcal{A}=(X,\cdot)$ eine Banachalgebra. Ein *echter* Unterraum $\mathfrak{I}\subsetneq X$ heißt **zweiseitiges Ideal** in X, falls

$$X\Im X := \{xuy : x, y \in X, u \in \Im\} \subset \Im$$
 (6)

gilt.

Folgerung 15.6

Wegen $\mathfrak{I}\neq X$ ist $e\not\in \mathfrak{I}$ und wegen $xx^{-1}=e$ enthält \mathfrak{I} auch keine invertierbaren Elemente von X.

Satz 15.7

Es sei $\mathcal{A}=(X,\cdot)$ eine Banachalgebra und \mathcal{I} ein zweiseitiges Ideal in X. Dann ist auch X/\mathcal{I} eine Banachalgebra.

Grundlagen der Funktionalanalysis

Kapitel 16: Lineare Integralgleichungen

B.Sc. Matthias Schulte

Technische Universität Dortmund

11. Januar 2019

Integralgleichungen I

- Jetzt: Unterteilung von Integralgleichungen
- Beweisidee: Häufig Neumannsche Reihe.
- Daher: Keine expliziten Beweise (zumindest nicht immer).

Definition 16.1

Es sei $K \subset \mathbb{R}^n$ kompakt und $\kappa \in C(K^2)$ ein stetiger Kern. Die Integralgleichung

$$f(t) - \int_{\mathcal{K}} \kappa(t, s) f(s) \, \mathrm{d}s = g(t), \ t \in \mathcal{K}, \tag{1}$$

heißt Fredholmsche Integralgleichung.

Beachte: Die Grenzen des Integrals sind "konstant".

Integralgleichungen II

Satz 16.2

Die Integralgleichung (1) hat gemäß Satz 15.3 und Formel (11.4) im Falle

$$\|\kappa\|_{\mathrm{ZI}} = \sup_{t \in \mathcal{K}} \int_{\mathcal{K}} |\kappa(t, s)| \, \mathrm{d}s < 1$$

für jedes $g \in C(K)$ genau eine Lösung $f \in C(K)$.

- 15.3 ist die Neumannsche Reihe.
- Formel (11.4): $\|S_{\kappa}\|_{\mathcal{L}(C(K))} = \|\kappa\|_{Z_{\Gamma}}$, $S_{\kappa} : f \mapsto (Sf)(t) := \int_{K} \kappa(t, s) f(s) ds$.

Integralgleichungen III

Satz 16.3

Es sei (Ω, Σ, μ) ein σ -endlicher Maßraum und $\kappa: \Omega^2 \to \mathbb{K}$ ein messbarer Kern, sodass eine der Abschätzungen aus Satz 11.9 die Aussage

$$\|S_{\kappa}\|_{\mathcal{L}(L_{p}(\Omega))} < 1$$

ergibt. Dann hat die Gleichung (1) nach Satz 15.3 für jedes $g \in L_p(\Omega)$ genau eine Lösung $f \in L_p(\Omega)$.

Erinnerung: Satz 11.9:

Es seien $1 und <math>\frac{1}{p} + \frac{1}{q} = 1$. Zudem sei $S := S_{\kappa}$ wie in 11.1. Dann gelten die Abschätzungen $\|S_{\kappa}f\|_{L_{2}} \leqslant \|\kappa\|_{L_{2}(K^{2})} \|f\|_{L_{2}}; \ f \in L_{2}(K), \ \|S_{\kappa}f\|_{L_{1}} \leqslant \|\kappa\|_{\mathrm{SI}} \|f\|_{L_{1}}, \ f \in L_{1}(K)$ und $\|S_{\kappa}f\|_{L_{p}} \leqslant \|\kappa\|_{\mathrm{ZI}}^{1/q} \|\kappa\|_{\mathrm{SI}}^{1/p} \|f\|_{L_{p}}, \ f \in L_{p}(K).$

Integralgleichungen IV

Satz 16.4

Es sei $K \subset \mathbb{R}^n$ kompakt und $\kappa \in C(K^2)$. Gilt

$$\|S_{\kappa}\|_{\mathcal{L}(L_{\rho}(\Omega))} < 1$$
,

so gibt es zu $g \in C(K)$ genau eine Lösung $f \in L_p(K)$ von $(I - S_K)f = g$.

- Unter dieser Voraussetzung ist der Operator $I S_{\kappa}$ sogar bijektiv.
- Wichtigstes Beweishilfsmittel ist wieder Satz 15.3.

Der Volterra-Operator I

• Integralgleichungen wie in (1) lassen sich auch mit *matrixwertigen* Kernen betrachten.

Definition 16.5

Es sei $\kappa \in C(J^2, \mathbb{M}_{\mathbb{K}}(n))$ ein stetiger matrixwertiger Kern auf einem kompakten Intervall $J \subset \mathbb{R}$. Der Operator

$$V: C(J, \mathbb{K}^n) \to C(J, \mathbb{K}^n),$$

$$(Vf)(t) := (V_{\kappa})f(t) := \int_a^t \kappa(s, t)f(s) \, \mathrm{d}s, \ a, t \in J, \ f \in C(J, \mathbb{K}^n),$$

$$(2)$$

heißt Volterra-Operator.

Der Volterra-Operator II

Satz 16.6

Ein Volterra-Operator V wie in (2) ist linear und erfüllt die Abschätzung

$$\left|\left|V^{j}\right|\right| \leqslant \frac{(t-a)^{j}}{j!} \left\|\kappa\right\|_{\sup}^{j} \text{ für } j \in \mathbb{N}.$$
(3)

 Wir kommen nun zur zweiten Sorte Integralgleichungen, die sich als wichtig erweisen.

Integralgleichungen V

Definition 16.7

Es sei $\kappa \in C(J^2, \mathbb{M}_{\mathbb{K}}(n))$ ein stetiger matrixwertiger Kern auf einem kompakten Intervall $J \subset \mathbb{R}$. Die Integralgleichung

$$f(t) - \int_{a}^{t} \kappa(s, t) f(s) \, \mathrm{d}s = (I - V) f(t) = g(t)$$

$$\tag{4}$$

heißt Volterrasche Integralgleichung.

Beachte: Hier sind die Grenzen des Integrals nicht konstant.

Satz 16.8

Die Integralgleichung (4) ist für alle $g \in C(J, \mathbb{K}^n)$ durch

$$f = (I - V)^{-1}g \in C(J, \mathbb{K}^n)$$
(5)

eindeutig lösbar und lässt sich (ähnlich wie in Beispiel 15.4) iterativ berechnen.

Integralgleichungen VI

Bemerkung 16.9

Für die iterative Berechnung von (5) hat man mit $c:=(b-a)\|\kappa\|_{\sup}$ die Fehlerabschätzung

$$\left\| f - \sum_{j=0}^{n} V^{j} g \right\|_{\sup} \leqslant e^{c} \frac{c^{n+1}}{(n+1)!} \left\| g \right\|_{\sup}, \tag{6}$$

die Konvergenz ist also schneller als linear.

- Weitere Untersuchungen von Integralgleichungen werden wir im Rahmen dieses Kurses nicht anstellen.
- Interessierte seien an [Kaballo, 2011], Abschnitt 4.4 bis 4.6 verwiesen.

Grundlagen der Funktionalanalysis

Kapitel 17: Grundbegriffe der Spektraltheorie

B.Sc. Matthias Schulte

Technische Universität Dortmund

20. Januar 2019

Spektralradius

• <u>Idee:</u> Erweitere das Konzept von Eigenwerten und Eigenvektoren von Matrizen auf den "unendlichdimensionalen" Fall.

Definition 17.1

Es sei $\mathcal{A} = (X, \cdot)$ eine Banachalgebra und $x \in X$. Die Zahl

$$r(x) := \limsup_{k \to \infty} \sqrt[k]{||x^k||} \in [0, ||x||], \tag{1}$$

heißt **Spektralradius** von *x*.

Invertierbare Elemente in Banachalgebren

Definition 17.2

Es sei $\mathcal{A} = (X, \cdot)$ eine Banachalgebra. Mit

$$G(X) := GX := \{ x \in X \mid \exists y \in X \colon xy = yx = e \}$$
 (2)

bezeichnen wir die **Gruppe der invertierbaren Elemente** von X.

• Ab nun bezeichne $\|\cdot\|$ die Norm auf dem Banachraum X.

Satz 17.3

G(X) ist offen in X und die Inversion $a \mapsto a^{-1}$ ist stetig. Sie ist ferner eine Homöomorphie (vgl. Definition 8.1) von G(X) auf sich selbst.

Begrifflichkeiten

Definition 17.4

Es sei $A = (X, \cdot)$ eine Banachalgebra und $x \in X$.

- a) Die Menge $\sigma(x) := \{\lambda \in \mathbb{K} : \lambda e x \notin G(X)\}$ heißt **Spektrum** von x.
- b) Die Menge $\rho(x) := \mathbb{K} \setminus \sigma(x)$ heißt **Resolventenmenge** von x.
- <u>c)</u> Die Abbildung $R_x: \rho(x) \to G(X)$, $\lambda \mapsto (\lambda e x)^{-1}$ heißt **Resolvente** von x.

Folgerung 17.5

- a) $\rho(x)$ ist offen in \mathbb{K} , da G(X) offen in X ist.
- b) Die Resolvente R_X ist stetig, da die Inversion auf G(X) stetig ist.

Eigenschaften der Resolvente I

Folgerung 17.6

Die Resolvente ist im Fall $\mathbb{K} = \mathbb{C}$ holomorph auf $\rho(x)$.

Definition 17.7

Für λ , $\mu \in \rho(x)$ heißt die Gleichung

$$R_{X}(\lambda) - R_{X}(\mu) = -(\lambda - \mu)R_{X}(\lambda)R_{X}(\mu)$$
(6)

Resolventengleichung. Sie gilt nach dem Beweis von Folgerung 17.5.

Satz 17.8

 $\sigma(x)$ ist kompakt in X für jedes $x \in X$. Insbesondere ist $\sigma(x)$ nichtleer. *Beweis:* Später.

Eigenschaften der Resolvente II

Folgerung 17.9

Für $|\lambda| > r(x)$ existiert

$$R_{x}(\lambda) = \frac{1}{\lambda} \sum_{k=0}^{\infty} \left(\frac{x}{\lambda}\right)^{k}.$$
 (7)

Folgerung 17.10

$$\text{Es gilt } \|R_{\mathbf{x}}(\lambda)\| \leqslant \frac{1}{|\lambda| - ||x||} \text{ für } |\lambda| > ||x||.$$

Beweis. Folgt sofort aus (7).

Eigenwerte und Eigenvektoren I

Definition 17.11

Es sei X ein Banachraum. Für $T \in \mathcal{L}(X)$ heißt $\lambda \in \mathbb{K}$ ein **Eigenwert** von T, falls es ein $0 \neq x \in X$ gibt mit

$$Tx = \lambda x. (8)$$

x heißt dann **Eigenvektor** von T zum Eigenwert λ .

Folgerung 17.12

- a) Es gilt: $N(\lambda I T) \neq \{0\} \Rightarrow \lambda I T \notin G\mathcal{L}(X)$.
- b) $\lambda I T \in G\mathcal{L}(X) \Leftrightarrow \lambda \in \sigma(T)$.
- c) Falls dim $X < \infty$ ist, so gilt: $\lambda \in \sigma(T) \Leftrightarrow \chi_T(\lambda) := \det(\lambda I T) = 0$.

Beweis: Klar nach Definition.

Eigenwerte und Eigenvektoren II

Beispiel 17.13

Wir wählen speziell $\mathbb{K} = \mathbb{R}$ und $\mathcal{A} := (\mathbb{M}_{\mathbb{R}}(n), \cdot)$. \mathcal{A} ist nach 15.2 b) eine Banachalgebra.

Für $M \in \mathbb{M}_{\mathbb{R}}(n)$ gilt nun

$$\sigma(M) = \{\lambda \in \mathbb{R} \colon \lambda I - M \not\in GL_n(\mathbb{R})\} = \{\lambda \in \mathbb{R} \colon \lambda \text{ ist Eigenwert von } M\}.$$

Die Resolventenmenge ist dann gegeben durch

$$\rho(M) = {\lambda \in \mathbb{R} : \lambda \text{ ist kein Eigenwert von } M} = \mathbb{R} \setminus \sigma(M).$$

Die Resolventenabbildung lautet dann $R_M: \rho(X) \to GL_n(\mathbb{R})$, $\lambda \mapsto (\lambda I - M)^{-1}$.

Eigenwerte und Eigenvektoren III

Fortsetzung von Beispiel 17.13

Konkreter gilt also

$$(\lambda I - M)v = \begin{cases} 0 & : & \lambda \text{ Eigenwert von } M \\ \left(R_M^{-1}(\lambda)\right)v & : & \lambda \text{ kein Eigenwert von } M \end{cases}$$

$$= \begin{cases} 0 & : & v \in \text{Eig}_{\lambda}(M) \\ \left(R_M^{-1}(\lambda)\right)v & : & v \not\in \text{Eig}_{\lambda}(M) \end{cases} .$$

Die bekannten Begrifflichkeiten gehen also aus der neuen Theorie hervor.

Eigenwerte und Eigenvektoren IV

Beispiel 17.14

Wir definieren für $1\leqslant p\leqslant \infty$ auf ℓ_p den sogenannten *Links-Shift-Operator* durch

$$S_{-}(x_0, x_1, x_2, x_3, \ldots) := (x_1, x_2, x_3, x_4, \ldots).$$
 (9)

Es gilt $||S|| := \sup_{||x||_{\ell_0} = 1} ||S_-(x)|| = 1$ und somit $\sigma(S_-) \subset \mathbb{D} := \{\lambda \in \mathbb{C} \colon |\lambda| \leqslant 1\}.$

Für $|\lambda| < 1$ gilt

$$S_{-}(1,\lambda,\lambda^2,\lambda^3,\ldots)=(\lambda,\lambda^2,\lambda^3,\lambda^4,\ldots)=\lambda\cdot(1,\lambda,\lambda^2,\lambda^3,\ldots),$$

d.h. λ ist ein Eigenwert von S_{-} . $\Rightarrow \mathbb{D}^{\circ} \subset \sigma(S_{-})$.

Nach Satz 17.8 ist das Spektrum kompakt, also folgt $\sigma(S_{-}) = \mathbb{D}$.

Beachte: Punkte auf $\partial \mathbb{D}$ sind nur für $p=\infty$ auch Eigenwerte, ansonsten nur Spektralwerte.

GRUNDLAGEN DER FUNKTIONALANALYSIS KAPITEL 18: DER SATZ VON HAHN-BANACH

B.Sc. Matthias Schulte

Technische Universität Dortmund

7. Mai 2019

EINLEITUNG UND VORBEREITUNGEN I

 In Satz 8.4 haben wir bereits ein einfaches Fortsetzungsprinzip kennengelernt.

Erinnerung: Satz 8.4

Es sei X ein normierter Raum, Y ein Banachraum, $V\subseteq X$ ein Unterraum und $T:V\to Y$ stetig und linear. Dann existiert $genau\ eine$ stetige Fortsetzung $\overline{T}:\overline{V}\to Y$ von T, diese ist linear und es gilt $||\overline{T}||=||T||$.

- Jetzt: Verallgemeinern und Erweitern.
- Zunächst: Ein paar Begrifflichkeiten.

Definition 18.1

Es sei E ein \mathbb{K} -Vektorraum. Der Raum

$$E^* := \{ T : E \to \mathbb{K} \colon T \text{ ist linear} \} \tag{1}$$

heißt algebraischer Dualraum von E und seine Elemente heißen Linearformen auf E. Es gilt $E'\subset E^*$.

Definition 18.2

Es sei E ein \mathbb{R} -Vektorraum. Ein **sublineares Funktional** ist eine Abbildung $p:E\to\mathbb{R}$ mit folgenden Eigenschaften:

(S1)
$$p(x+y) \le p(x) + p(y), x, y \in E.$$

$$(S2) p(tx) \le tp(x), x \in E, t \ge 0.$$

Vorbereitungen II

Beispiel 18.3

Normen und Halbnormen sind sublineare Funktionale.

Definition 18.4

- - (H1) $x \prec x$ für alle $x \in M$.
 - $\frac{\overline{\text{(H2)}}}{x, y, z \in M}.$ x \leq y \leq y \leq z \Rightarrow x \leq z \text{ für alle}
 - $\frac{\text{(H3)}}{x, y \in M}. x \prec y \land y \prec x \Rightarrow x = y \text{ für alle}$
- B) $m \in M$ heißt maximal, falls gilt:

$$m \prec x \Rightarrow x = m.$$
 (2)

Definition 18.4 (Fortsetzung)

 $\underline{\mathrm{C})} \ \ C \subset M$ heißt **Kette** oder **total geordnet**, falls gilt:

$$x, y \in C \Rightarrow x \prec y \text{ oder } y \prec x.$$
 (3)

Lemma 18.5 (Lemma von Zorn)

Es sei (M, \prec) eine halbgeordnete Menge, in der jede Kette eine obere Schranke hat. Dann besitzt M ein maximales Element.

- Nun wenden wir uns dem Satz von Hahn-Banach zu.
- Wir werden diesen allerdings in verschiedenen Versionen kennenlernen.

DER SATZ VON HAHN-BANACH I

Theorem 18.6 (Satz von Hahn-Banach über $\mathbb{K} = \mathbb{R}$)

Es sei E ein \mathbb{R} -Vektorraum und $V_0 \subset E$ ein Unterraum von E. Ferner sei $p:E \to \mathbb{R}$ sublinear und $f_0:V_0 \to \mathbb{R}$ linear mit

$$f_0(x) \le p(x) \ \forall x \in V_0.$$
 (4)

Dann gibt es eine Linearform $f:E \to \mathbb{R}$ mit $f\mid_{V_0}=f_0$ und

$$-p(-x) \le f(x) \le p(x), \ x \in E. \tag{5}$$

- Jetzt: Auf $\mathbb{K} = \mathbb{C}$ fortsetzen.
- Dafür benötigen wir eine Vorbereitung.

Bemerkung 18.7

Für $z\in\mathbb{C}$ gilt

$$z = Re(z) - iRe(iz).$$
 (6)

THEOREM 18.8 (Satz von Hahn-Banach über $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$)

Es sei E ein \mathbb{K} -Vektorraum und $V_0 \subset E$ ein Unterraum von E. Ferner sei $p: E \to \mathbb{R}$ eine Halbnorm und $f_0: V_0 \to \mathbb{K}$ linear mit $|f_0(x)| \leq p(x)$ für alle $x \in V_0$. Dann gibt es eine Linearform $f: E \to \mathbb{K}$ mit $f|_{V_0} = f_0$ und

$$|f(x)| \le p(x), \ x \in E. \tag{7}$$

DER SATZ VON HAHN-BANACH II

 Wir formulieren nun einen wichtigen Spezialfall gesondert:

THEOREM 18.9 (Satz von Hahn-Banach)

Es sei X ein normierter Raum über $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, $V_0 \subset X$ ein Unterraum von X und $f_0 \in V_0'$ eine stetige Linearform auf V_0 . Dann hat f_0 eine Fortsetzung zu einer stetigen Linearform $f \in X'$ auf X mit $||f|| = ||f_0||$.

 Zum Abschluss betrachten wir noch einige Erweiterungen und Folgerungen.

Folgerung 18.10

Es sei X ein Banachraum und $0 \neq x \in X$. Dann gibt es eine stetige Linearform $f \in X'$ mit $f(x) \neq 0$. • Nun können wir Satz 17.8 beweisen.

Erinnerung: Satz 17.8

 $\sigma(x)$ ist kompakt in X für jedes $x \in X$. Insbesondere ist $\sigma(x)$ nichtleer.

Satz 18.11

Es sei X ein normierter Raum, $V\subset X$ ein abgeschlossener Unterraum und $x_1\in X/V$. Dann gibt es eine stetige Linearform $f\in X'$ mit $f\mid_{V}=0$ und $f(x_1)\neq 0$.

Satz 18.12

Es sei X ein normierter Raum und $V\subset X$ ein Unterraum von X, sodass für jede stetige Linearform $f\in X'$ aus $f\mid_{V}=0$ bereits $f\equiv 0$ folgt. Dann ist V dicht in X.

Ausblick

- Mit den Fortsetzungssätzen von Hahn-Banach endet dieser Kurs.
- Von hier aus: Verschiedene Möglichkeiten!
 - Sobolev-Räume.
 Kontrollieren neben Integrierbarkeit auch noch (schwache) Differenzierbarkeit. Anwendung zum Beispiel in der (A)FEM.
 - Spektraltheorie. Vertiefung von Kapitel 17.
 - Hilberträume.
 - Partielle Differentialgleichungen und Variationsrechnung.
 - Distributionstheorie.

Nachfolgekurs: Hilberträume, Operatortheorie und

- -----
- Dieser ist hier zu finden.

Distributionen

- Inhaltlich:
 - Hilbertraumtheorie.
 - Grundbegriffe der Operatortheorie.
 - Sobolevräume.
 - Einführung in die Distributionstheorie.
- Präsentiert wird das Ganze in ähnlicher Form wie hier – aber nur mit Folien, dafür voraussichtlich mit Beweisen.

Dann bleibt nur noch zu sagen:

Vielen Dank für Euer Interesse!